Efficacy of tap water or tap water and soap on Handwashing to remove hands contaminated bacteria

Nidham M. Jamalludeen* *Department of Microbiology College of Medicine University of Basrah Basrah, Iraq

Corresponding author: njovc@yahoo.com

Abstract: This study was conducted to identify the efficacy of handwashing by using tap water alone and soap with tap water together at the self-contaminated hands. Handwashing is stated to be influential for the prevention of transmission of several contaminated microorganisms. One hundred twenty (120) volunteer students were participated in self-contaminated hands by touching door handles and other public handles at the college of medicine and teaching hospital buildings. Then, the volunteers were also collected. One hundred forty six different isolates were identified; Escherichia coli 30.82%, Staphylococcus epidermidis 19.18%, and Candida spp. 10.96% were the most organisms isolated. Enterobacter spp. 8.91%, Staphylococcus aureus 6.16%, and Klebsiella spp. 6.16% were also isolated in this study. However, Klebsiella spp. and Enterobacter sppwere the most organisms affected in handwashing procedure in a percent reduction of 50% and 42.9% respectively as compared with other organisms which shows little efficacy of handwashing responses using tap water only. In contrast with the other attempted using soap and tap water to wash hands of self-contaminated volunteers which shows high effected responses. Using soap and tap water were more effective than using tap water alone to remove the bacteria from the contaminated hands.

Key words: Handwashing, Tap water, soap, Bacteria

____ **♦**

Introduction:

Hand hygiene has been considered an important act for public health and as good personal hygiene promotion. Hands can be cleaned in order to remove dirt, soil, and/or microorganisms (1). Careful care to hand hygiene can lower rates of infections that might be transmitted from the contaminated hands or hands in contact with the health care facilities, child care centers and households areas (1, 2, 3). With adequate hands hygiene, removal of pathogenic microorganisms can be disrupted and the transmissions of infectious disease are also reduced. Administration of good hygienic practices can prevents or minimizes disease and/or the spreading of disease. Hand washing experience is one of very good practice for people who handle food or work in the medical field, but it is also an important habit for the general public. People can be exposure to the infection with respiratory illnesses such as (influenza or the common cold), if they don't wash their hands before contacting their mouth, nose oreyes. Indeed, the Centers for Disease Control and prevention (CDC) has mentioned:"It is well

documented that one of the most important measures for preventing the spread of

pathogens is effective hand washing." As a general rule, hand washing protects people

poorly or not at all from droplet- and airborne diseases, such

as measles, chickenpox, influenza, and tuberculosis. It protects best against diseases

transmitted through fecal-oral routes (such as many forms of stomach flu) and direct

physical contact (such as impetigo). (4).

High percentage of the children around the world had been dead because of the diarrheal diseases (5). The WorldHealth Organization (WHO) recognizes the spread of diarrheal diseases as a serious globalproblem and estimates that each year (6), there are more than 2.2 million lives lost due to theseinfections, more than from malaria, HIV/AIDS and measles combined (7). The majority of thesedeaths are in children under 5 years of age (8). It has been suggested that hand washing maysubstantially reduce the risk of diarrheal diseases (7).

In 2007, a great collaboration work was done to analyze the relationship between handwashing behavior and the subsequent experience of child diarrhea in households.

The study was targeted 20 million people in rural Bangladesh which identified that the

handwash practice were associated with fewer diarrheas (9, 10).

A number of studies have compared hand hygiene methods (11). Whereas, restricted of

these have been published showing the effect of water and soap on hand wash on

bacterial contamination of hands in the public. Therefore, this study was aimed to identify

the efficacy of handwashing by tap water alone and soap with tap water together at the

self-contaminated hands.

Materials and Methods:

Bacteriologic Media and chemicals:

MacConkey agar (MAC), MacConkey broth, and Mannitol Salt Agar (M.S.A) were

purchased from HiMediaLaboratories (Mumbai, India). These media were prepared

according to the manufacturer's instructions. API 20E biochemical test to determine the

identity of the bacteria as well as Gram stain, Catalase and oxidase were also purchased

from HiMedia Laboratories.

1521

Experimental Design:

A total of 120 volunteer students from college of medicine were participated in this

study. The volunteers were divided for four groups of 30 volunteers. The participates

were asked to clean their hands with alcohol gel and dry it with paper tissues before they

asked to touch and wipe their hands to contact surfaces such as door handles, seats,

handrails and other public surfaces at the teaching hospital and the college buildings.

They asked to do that in order to contaminating their hands with any bacteria were

present on the surfaces. Then, every individual of the volunteers hands were wiped with

normal saline wetted swab and prepared for culture on MacConkey broth and mannitol

salt agar. Each group of participated volunteers were then also divided for two groups of

15 and asked to wash their hands as they would normally do every time without

instruction on length of time. Each one group of 15 were washed their hands with tap

water only and the other group with soap and tap water. The volunteers that were

participated to handwashing were then provided with paper tissues to dry their hands.

Normal saline wetted swab were wiped across the fingers and whole of the contaminated

area of the rest of hand for each individual and then were given a disinfectant to clean and disinfect their hands. The swabs were directly processed and cultured on MSA agar and then a piece of that swab was cut into a universal tube containing 10 mL of MacConkey broth. The plates and the broth were then incubated at 37° Cfor 48 hours. Samples from MAC broth were streaked onto MAC agar and incubated for 24 hours at37° C. A total of 146 isolates were identified. Colonies that were appeared on MSA agar were processed for further identification using techniques mentioned by (12). For all other colonies appeared on MAC agar were also processed for getting their identity following inoculation on API 20E biochemical test and according to the criteria mentioned by (12). However, a total of (60 swabs taken form volunteers washed their hand with tap water only and 60 swabs from volunteers washed their hand with soap and tap water) were submitted for statistical analysis to check the prevalence of bacterial contamination and the effect of the hand wash using the percent reduction test according to the formula of percent reduction = (A-B) *100/A; where A is the number of isolates before

handwashing and B is the number of isolates after handwashing.

Results:

Different organisms were isolated in this study which was displayed in Table 1.

Escherichia coli 30.82%, Staphylococcus epidermidis 19.18%, and Candida spp. 10.96%

were respectively the most organisms isolated from the total of 146 isolates reported from

the self-contaminated trails. Enterobacter spp. 8.91%, Staphylococcus aureus 6.16%, and

Klebsiella spp. 6.16% were also isolated in this study. On the other hand, mixed

organisms were also isolated in a percentage of 17.81% from the total isolates and it was

not processed for further identification. Table 2, shows the organisms isolated from hands

of self-contaminated volunteers, and the efficacy of handwashing with tap water only.

Klebsiella spp. and Enterobacter sppwere the most organisms affected in handwashing

procedure in a percent reduction of 50% and 42.9% respectively as compared with other

organisms which shows little efficacy of handwashing responses. In contrast with the

other attempted, the researchers were using soap and tap water together to wash hands

of self-contaminated volunteers (Table 3). It shows more efficacy results for most of the

isolated organisms from the percent reduction test as compared with using tap water only

to eliminate organisms contaminated the self-contamination hands of the volunteers

(Table 3).

IJSER

Table 1. Organisms isolated from hands of self-contaminated volunteers, by touch and wipe their hands oncontact surfaces such as door handles, seats, handrails and other public surfaces.

Organisms	Isolates after self- Percentage	
	contamination	
Escherichia coli	45	30.82%

Staphylococcus	28	19.18%
epidermidis		
Enterobacter spp.	13	8.91%
Candida spp.	16	10.96%
Staphylococcus	9	6.16%
aureus		
Klebsiella spp.	9	6.16%
	IC	
Mixed Isolates	26	17.81%
Total	146	100%

Table 2. Organisms isolated from hands of self-contaminated volunteers, and

handwashing with tap water only.

Organisms	Isolates after self-	Isolates after wash	% Reduction
	contamination	with tap water only	
Escherichia coli	20(33%)	15(25%)	25%
Staphylococcus epidermidis	16(27%)	10(17%)	37.5%
Enterobacter spp.	7(12%)	4(7%)	42.9%
Candida spp.	8(13%)	7(12%)	12.5%
Staphylococcus aureus	5(8%)	3(5%)	40%
Klebsiella spp.	4(7%)	2(3%)	50%
Total	60(100%)	60(100%)	

Table 3. Organisms isolated from hands of self-contaminated volunteers, and

handwashing with tap water and soap.

Organisms	Isolates after self-	Isolates after soap	% Reduction
	contamination	& water wash	
Escherichia coli	25(42%)	6(10%)	76%
Staphylococcus epidermidis	12(20%)	2(3%)	83%
Enterobacter spp.	6(10%)	1(2%)	83%

Candida spp.	8(13%)	4(7%)	50%
Staphylococcus aureus	4(7%)	1(2%)	75%
Klebsiella spp.	5(8%)	0(0%)	100%
Total	60(100%)	60(100%)	

IJSER

Discussion:

Health care-associated infections and cross transmission of nosocomial infections

have ranked in the top of death causative agents around the world and united states and

it is estimated as responsible for several infections (13, 14). The most common

pathogens involved are Gram-negative bacteria such as E. coli and pseudomonas as well

as aerobic Gram-positive bacteria such as coagulase negative Staphylococci and

Staphylococcus aureus besides of several viruses which are well described in the health

care setting (15, 16, 17, 18). In this study, the researchers were isolated several

organisms (Table 1) which come in agreement with criteria mentioned by the health care-

association and some were nosocomial organisms that might cause serious infections

through the transmission procedure and through the contamination of public used utensils.

Hand hygiene and proper handwashing measurements have been shown to reduce the level of transient microorganisms on the hands (19, 20). For that the Centers for Disease Control and Prevention (CDC) and other health organizations recommend using hand antiseptic as a key measure for reducing the incidence of hand transmission infections (21). However, many studies have been done to demonstrate the effectiveness of antiseptic and detergent on hands (22, 23). This study has shown reducing the

prevalence of contamination between the handwashing procedures as compared with no

handwashing (Table 2 & 3). Overall, using tap water alone slightly reduces the

contamination as compared with using soap and tap water together. The reason for these

differences seems to be due to using the soap as detergent which might cause the

volunteers to wash their hands longer than using the water alone which were given a

chance to remove bacteria more than using water alone. Burton et al., (23) has also

reported similar findings as compared with using soap or water alone but unlike the same

study we have isolated E.coli from the hands of self-contaminated volunteers as these

bacteria can play very important roles in diarrheal disease (5, 24). Most of the bacteria

that were isolated in this study were a candidate to cause disease in human beings and

isolation of bacteria such as *Staphylococcus aureus* is considered as big health

associated problem for transmission of such pathogenic organism.

Conclusion:

This study has shown the efficacy of using soap with tap water to remove self-

contaminated hand with bacteria through wipe the hands over the surfaces of public's

handles. Using soap and tap water were more effective than using tap water alone to

remove the bacteria from the contaminated hands. These results are support the other

findings which had been mentioned in using soap with water to remove bacteria from any

contaminated hands (25, 26).

Acknowledgments:

The authors would like to thank Ms. Mareim Nabeel for her kindly assist in sampling and

Dr. Asaad Al-Yasian for his advice in statistical analysis.

Conflict of interest: None

References:

- Pittet D, Hugonnet S, Harbarth S, Mourouga P, Sauvan V, Touveneau S, et al. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Lancet 2000;356:1307-12.
- Shahid NS, Greenough WB, Samadi AR, Huq MI, Rahman N. Hand washing with soap reduces diarrhoea and spread of bacterial pathogens in a Bangladesh village. J Diarrhoeal Dis Res 1996;14:85-9.
- Niffenegger JP. Proper handwashing promotes wellness in child care. J Pediatr Health Care 1997; 11:26-31.
- 4. http://en.wikipedia.org/wiki/Hand_washing
- 5. Boschi-Pinto, C.; Velebit, L.; Shibuya, K. Estimating child mortality due to diarrhea in developing countries. Bull. WHO 2008, 86, 710-707.
- WHO Health Statistics 2008, Mortality and Burden of Disease; WHO: Geneva, Switzerland ,2008; Available online:

http://www.who.int/whosis/whostat/EN_WHS08_Table1_Mort.pdf (accessed on 16 November 2010).

- Ejemot, R.I.; Ehiri, J.E.; Meremikwu, M.M.; Critchley, J.A. Hand washing for preventing diarrhea. Cochrane Database Syst. Rev. 2008, 1, Art. No. CD004265, DOI:10.1002/14651858.CD004265.pub2.
- 8. Black, R.E.; Morris, S.S.; Bryce, J. Where and why are 10 million children dying every year? . Lancet 2003, 361, 2226-2234.
- Luby SP, Halder AK, Huda TMN, Unicomb L, and Johnston RB. Using Child Health Outcomes to Identify Effective Measures of Handwashing. Am J Trop Med Hyg. 2011a; 85(5): 882–892.
- 10. Luby SP1, Halder AK, Huda T, Unicomb L, Johnston RB.The effect of handwashing at recommended times with water alone and with soap on child diarrhea in rural Bangladesh: an observational study.PLoS Med. 2011b. Jun;8(6):e1001052. doi: 10.1371/journal.pmed.1001052. Epub 2011 Jun 28.
- 11. WHO Guidelines on Hand Hygiene in Health Care; WHO: Geneva, Switzerland, 2009; Available online: http://whqlibdoc.who.int/publications/2009/9789241597906_eng.pdf (accessed on 16 November 2010).

12. Bailey & Scott's Diagnostic Microbiology, 13th Edition, 2013. Mosby.

- 13. Weist K, Pollege K, Schulz I, Ru⁻den H, Gastmeier P. How many nosocomial infections are associated with cross-transmission: a prospective cohort study in a surgical intensive care unit. Infect Control Hosp Epidemiol2002;23:127-32.
- Burke JP. Infection control-a problem for patient safety. N Engl J Med 2003;348:651-6.
- 15. Valenti WM, Menegus MA, Hall CB, Pincus PH, Douglas RG. Nosocomial viral infections: I. epidemiology and significance. Infect Control 1980;1:33-7.
- 16. Slinger R, Dennis P. Nosocomial influenza at a canadian pediatric hospital from
 1995 to 1999: opportunities for prevention. Infect Control Hosp
 Epidemiol2002;23:627-9.
- 17. Heerens AT, Marshall DD, Bose CL. Nosocomial respiratory syncytial virus: a threat in the modern neonatal intensie care unit. J Perinatol 2002; 22:306-7.
- 18. Widdowson MA, van Doornum GJ, van der Poel WH, de Boer AS, van de Heide R, Mahdi U, et al. An outbreak of diarrhea in a neonatal medium care unit caused by a novel strain of rotavirus: investigation using both epidemiologic and microbiological methods. Infect Control Hosp Epidemiol2002;23:665-70.
- Zaragoza M, Salle's M, Gomez J, Bayas JM, Trilla A. Handwashing with soap or alcoholic solutions: a randomized clinical trial of its effectiveness. Am J Infect Control 1999;27:258-61.

- 20.Marena C, Lodol L, Zecca M, Bulgheroni A, Carretto E, Maserati R, et al. Assessment of handwashing practices with chemical and microbiologic methods: preliminary results from a prospective crossover study. Am J Infect Control 2002; 30:334-40.
- 21. Boyce JM and Pittet D. Centers for Disease Control and Prevention. Guideline for hand hygiene in health-care settings: recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Am J Infect Control 2002;30:S1-46.
- 22.Sickbert-Bennett E, Weber DJ, Gergen-Teague MF, Sobsey MD, Samsa GP, and Rutala WA. Comparative efficacy of hand hygiene agents in the reduction of bacteria and viruses. AJIC. 2005; 33(2): 67-77.
- 23.Burton M, Cobb E, Donachie P, Judah, G, Curtis V, and Schmidt WP. The Effect of Handwashing with Water or Soap on Bacterial Contamination of Hands. Int. J. Environ. Res. Public Health **2011**, 8: 97-104.
- 24. Hien BT, Scheutz F, Cam PD, Serichantalergs O, Huong TT, Thu TM, Dalsgaard A. Diarrheagenic Escherichia coli and Shigella strains isolated from children in a hospital case-control study in Hanoi, Vietnam. J ClinMicrobiol. 2008; 46(3): 996-1004.
- 25. Curtis, V.; Sidibe, M.; Scott, B.E.; Iyer, P.; Sara, J. The Handwash Handbook: A Guide forDeveloping a Hygiene Promotion Program to Increase Handwashing with Soap; The World Bank Group: Washington, DC, USA, 2005; pp. 67-68.

26.Scott, B.E.; Schmidt, W.P.; Aunger, R.; Garbrah-Aidoo, N.; Animashaun, R. Marketing hygiene behaviours: The impact of different communication channels on reported handwashing behavior of women in Ghana. *Health Educ. Res.* 2008, *23*, 392-401.

IJSER